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Macroscopic Electric Field in a Material

We first want to ask two questions:

* What is the relation in the material between the dielectric polarization
P and the macroscopic electric field E in the Maxwell equations?

* What is the relation between the dielectric polarization and the local
electric field which acts at the site of an atom in the lattice? The local
field determines the dipole moment of the atom.

Maxwell Equations (in CGS) Polarization
Ar . 1 8 The polarization P is defined as the
curl H = ="j + ¢ ot (E + 47P) ; dipole moment per unit volume,
_ 10B averaged over the volume of a cell.
curl E = —= == ; ) .
ot The total dipole moment s
divE = dmp ; definedas P = 2q.ry ,  wherer, is

divB =0 ; the position vector of the charge g,..



The electric field at a point r from a
dipole moment p is given by a
standard result of elementary
electrostatics:
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The lines of force of a dipole pointing
along the z axis are shown in the
right.
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We define the macroscopic electric field E(r,) as the average field over the

volume of the crystal cell that contains the lattice point r:

E(r,) = VLJ dV e(r) , where e(r) is the microscopic electric field at the

point r.

It is adequate for all problems in the electrodynamics of crystals provided

that we know the connection between E, the polarization P, and the current
density j, and provided that the lengths of interest are long in comparison

with the lattice spacing.



By a famous theorem of electrostatics the macroscopic electric field
caused by a uniform polarization P is equal to the electric field in vacuum
of a fictitious surface charge density o = n-P on the surface of the body.
Here A is the unit normal to the surface, drawn outward from the
polarized matter.

o =+P
o=-P
E1<r) EI(I'>
(a) (b)
By Gauss’s law, E, = —4wlo| = —4nP

We add E, to the external applied field E, to obtain the total macroscopic
field E inside the slab, with z" the unit vector normal to the plane of the

If the polarization is uniform within the body, the only contributions to the
macroscopic field E are from E, and E; .



Depolarization Field

The field E, is called the depolarization field,
for within the body it tends to oppose the
external applied field E, as in the figure below.

If P, P, P, are the components of the
polarization P referred to the principal axes of
an ellipsoid, then the components of the
depolarization field are written

E=—N/P; ; Ely = _NyPy ; E,. = —N.P.
Here N,, N,, N, are the depolarization

factors; their values depend on the o
ratios of the principal axes of the Thin b
ellipsoid. The N’s are positive and Ezﬁg(ﬁigﬁggg
satisfy the sumrule N, + N, + N, = 41

in CGS, and N, + N, + N,=1inSI.

Shape

[T |

A uniform E, will induce
uniform polarization in an
ellipsoid.

N

Asis (ccs) (s1)

any 4m/3 1/3
normal 47 1
in plane 0 0
longitudinal 0 0

transverse o 12

We introduce the dielectric susceptibility y such that polarizationP = xE , then

E=Ey+ E, =E,— NP ; P = x(E, — NP) ;

X
1+ Ny

P = E,



Local Electric Field at an Atom

The value of the local electric field that acts at the site of an atom is
significantly different from the value of the macroscopic electric field.
Consider the field that acts on the atom at the center of the sphere. If all
dipoles are parallel to the z axis and have magnitude p, the z component of
the field at the center due to all other dipoles is,

E dipole ™ —p 2

The x, y, z directions are equwalent because of the symmetry; thus

32 - 23—t — gt
_pE 5

i

SN
> ==2-=:=2"= . whence Ej,,.=0.
i T i T i T
The local field at an atom is the sum of the electric field E, from external
sources and of the field from the dipoles within the specimen. It is

convenient to decompose the dipole field so that part of the summation
over dipoles may be replaced by integration. Then,

Elocal EO + El + E2 + E3




[ E;from
outer
boundary

- surface of
spherical

E; from dipoles
inside sphere

3( i.ri>ri_r? i
E10C31:E0+E1+E2+E3 E1+E2+E3:2 L 5 P

1

E, = field produced by fixed charges external to the body;

E, = depolarization field, from a surface charge density n” - P on the outer
surface of the specimen;

E, = Lorentz cavity field: field from polarization charges on inside of a
spherical cavity cut (as a mathematical fiction) out of the specimen
with the reference atom as center; E; + E, is the field due to uniform
polarization of the body in which a hole has been created;

E; = field of atoms inside cavity.

The contribution E1 + E2 + E3 to the local field is the total field at one atom
caused by the dipole moments of all the other atoms in the specimen.



Lorentz Cavity Field

The field E, due to the polarization charges on the surface of the fictitious
cavity was calculated by Lorentz. If 6 is the polar angle referred to the
polarization direction, the surface charge density on the surface of the
cavity is —P cosf. The electric field at the center of the spherical cavity of
radius a is

E, = Jw(a_2)(27m sin 0)(a dO)(P cos 6)( cos 6) =

0

The field E; due to the dipoles within the
spherical cavity is the only term that depends

on the crystal structure. For a reference site
with cubic surroundings in a sphere that E; =0
if all the atoms may be replaced by point

dipoles parallel to each other. The total local
417 4

Charge onring =

field ata cubicsite is, By =E)+E, +"P=E+-"P 2746in0-adf - Pcosd

This is the Lorentz relation: the field acting at an atom in a cubic site is the
macroscopic field E plus 4P/3 from the polarization of the other atoms in
the specimen.



Dielectric Constant and Polarizability

The dielectric constant € of an isotropic or cubic medium relative to vacuum is
defined in terms of the macroscopic field E:

E + 47P P_e—1
€ E X ; and X E 41

The polarizability o of an atom is defined in terms of the local electric field at
the atom: p = aE,,.., Where p is the dipole moment. The polarizability is an
atomic property, but the dielectric constant will depend on the manner in
which the atoms are assembled to form a crystal. The relation of the dielectric
constant to the polarizabilities depends on the relation between the
macroscopic electric field and the local electric field. If the local field is given
by the Lorentz relation, then the polarization of a crystal may be expressed

approximately as SN

417 _ P _
P=(2Nuw)) <E+—P> , and X= 4= :
77 3 E 1_4?7721\7]%

where N; is the concentration and a; the polarizability of atoms j.

: —1_4 : : :
Since e=1+4mY == Z To " 377 2Na; = Clausius-Mossotti relation.




Electronic Polarizability

The total polarizability may usually be separated into three parts: electronic,
ionic, and dipolar. The electronic contribution arises from the displacement
of the electron shell relative to a nucleus. The ionic contribution comes from
the displacement of a charged ion with respect to other ions. The dipolar
polarizability arises from molecules with a permanent electric dipole
moment that can change orientation in an applied electric field.

The left figure shows the frequency-
dependent polarizability. The dielectric
constant (e€) at optical frequencies
arises almost entirely from the
electronic polarizability. The dipolar
and ionic contributions are small at

Total polarizability (real part)

Ultra-
violet

UHEF to

) Infrared
microwaves

T dipolar

high frequencies because of the inertia
of the molecules and ions. In the

a electronic

Frequency

optical range, by € = n?, we obtain the
\/ refractive index n
n>—1_ 4 .
Tia 3 ZNja (electronic)



An electron bound harmonically to an atom will show resonance absorption
at a frequency w, = (B/m)Y/2, where B is the force constant. The motion of the

electron in the local electric field E,_ sin(wt) is

2
md—t?zc + mwix = —eE,,, sin wt

Let x = xysin wf, we obtain m(—w” + wy)xy = —eE,

The dipole moment has the amplitude:

2
_ . _ € Eo . eXm
Po— —€Xy — 9 9 ) a(electromc) — 5 3
m(w; — @) Wy — W

Electronic polarizabilities a of atoms and ions, in 1024 cm?3

He LI+ B62+ B3+ C4+

Pauling 0.201 0.029 0.008 0.003 0.0013
JS 0.029

03~ F- Ne Na* Mg>* AlPT Si*t
Pauling 3.88 1.04 0.390 0.179 0.094 0.052 0.0165
JS-(TKS) (2.4) 0.858 0.290

S2- Cl™ Ar K" Ca2* Se3+ Tit*
Pauling 10.2 3.66 1.62 0.83 0.47 0.286 0.185
JS-(TKS) (5.5) 2.947 1.133 (1.1) (0.19)

Se?~ Br~ Kr Rb™ Sr2* Y3+ Zrtt
Pauling 10.5 4.77 2.46 1.40 0.86 0.55 0.37
JS-(TKS) (7.) 4.091 1.679 (1.6)

Te?~ I Xe Cs™ BaZt La3" Ce*t
Pauling 14.0 7.10 3.99 2.42 1.55 1.04 0.73

JS-(TKS) (9.) 6.116 2.743 (2.5)



Three Dielectric Phases
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Phase Transition

* A phase is a physically distinct, chemically homogeneous
and mechanically separable state.

* Change of states of matter at specific combinations of

temperature and pressure is called phase transition.

First order Second order

Latent heat is involved No latent heat
Polarization is discontinuous  Continuous variation of polarization
eg: water liquid-vapor transition eg: normal-superconducting state

ferroelectric-paraelectric Ferromagnetic-paramagnetic



Structural Phase Transitions

It is not uncommon for crystals to transform from one crystal structure to
another as the temperature or pressure is varied. The stable structure at a
temperature T is determined by the minimum of the free energy F = U - T5.
There will be a transition from A to B if a temperature T, exists such that
F.(T.) > F5(T.). This is because the structure B may have a softer or lower
frequency phonon spectrum than A. As the temperature is increased more
phonons in B will be excited than the phonons in A. Because the entropy
increases with the occupancy, the entropy of B will become higher than the
entropy of A as the temperature is increased.

For a stable structure A at absolute zero, it generally has the lowest
accessible internal energy of all the possible structures. Even this selection
of a structure A can be varied with application of pressure, because a low
atomic volume will favor closest-packed or even metallic structures.
Hydrogen and xenon, for example, become metallic under extreme pressure.



Ferroelectric Crystals

A ferroelectric crystal exhibits an
electric dipole moment even in the

To obtain the spontaneous polarization P, in the CGS unit of esu cm ™2, multiply the
value given in uC ¢cm ™ by 3 X 10

absence of an external electric field. In Lt LoinpCen U IK
. . KDP type KH,PO, 123 4775 [96]
this state the center of positive charge KD.PO, 213 483 [180]
RbH,PO, 147 5.6 [90]

of the crystal does not coincide with KILASO, o 20 7]
. TGS type Tri-glycine sulfate 322 2.8 [29]

the center of negative charge. The plot ™" T ghvine slemate 295 32 1283
. . . . Perovskites BaTiO, 408 26.0 [296]

of polarization versus electric field for KNDO 708 30.0 [523]
PbTiO, 765 >50 [296]

the ferroelectric state shows a LG, N 2 1206

hysteresis loop.

Above the transition temperature, ferroelectricity usually disappears and the
crystal is in a paraelectric state. There is usually a rapid drop in the dielectric
constant as the temperature increases. In some crystals the ferroelectric dipole
moment is not changed by an electric field of the maximum intensity before
electrical breakdown. Such crystals are called pyroelectric. Lithium niobate,
LINbO;, is pyroelectric at room temperature. It has a high transition
temperature (T, = 1480 K) and a high saturation polarization (50 uC/cm?).



Character of Transition

Ferroelectric crystals may be classified into two main groups by their structural
transition, order-disorder or displacive. One may define the character of the
transition in terms of the dynamics of the soft optical phonon modes. If a soft
mode can propagate in the crystal at the transition, then the transition is
displacive. If the soft mode is only diffusive (non-propagating) there is really not
a phonon at all, but is only a large amplitude hopping motion between the wells
of the order-disorder system. Many ferroelectrics have soft modes that fall
between these two extremes. The order-disorder class of ferroelectrics includes
crystals with hydrogen bonds in which the motion of the protons is related to
the ferroelectric properties, as in potassium dihydrogen phosphate (KH,PO,) and
isomorphous salts. The substitution of deuterons for protons nearly doubles T,

although the fractional change in the molecular weight of the compound is less

than 2 percent: KH,PO, KD,PO, KHyAsO4 KD;AsO,
Curie temperature 123 K 213 K 97 K 162 K

Neutron diffraction data show that above the Curie temperature the proton
distribution along the hydrogen bond is symmetrically elongated. Below the
Curie temperature the distribution is more concentrated and asymmetric with
respect to neighboring ions, giving a polarization.



Perovskite Structure

The displacive class of ferroelectrics includes ionic crystal structures closely
related to the perovskite and ilmenite structures. The general chemical formula
for perovskite compounds is ABX;, where 'A' and 'B' are two ions, often of very
different sizes, and X is anion (frequently oxide) that bonds to both ions. The 'A’
atoms are generally larger than the 'B' atoms. The ideal cubic structure has the
B cation in 6-fold coordination, surrounded by an octahedron of anions, and the
A cation in 12-fold cuboctahedral coordination. The perovskite structure of
barium titanate (BaTiO;) is slightly deformed below the Curie temperature, with
Ba,* and Ti,* ions displaced relative to the O, ions, thereby developing a dipole
moment. The upper and lower oxygen ions may move downward slightly.




Spontaneous polarization projected on cube edge of barium titanate as a
function of temperature is displayed below. Estimate the order of
magnitude of the ferroelectric effects in barium titanate: the observed
saturation polarization Ps at room temperature is 8x10* esu cm™. The
volume of a cell is 64x1072* cm3, so that the dipole moment of a cell
is p=(8X10"esucm ?)(64 X 107 cm™>) =5X 10" esucm ,

If the positive ions Ba,* and Ti,* were moved by & = 0.1 A with respect to
the negative O, ions, the dipole moment of a cell would be 6ed ~ 3 x 10718

m-Jd 4
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12 T}
8 B e ’%1

20 x 102

16

4O=(f=CEO=

Rhombohedral Monoclinic Tetragonal
4
e

P, (coulombs/m2)

0
-200 -160  -120 -80 —40 0 40 80 120
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Displacive Transition

Two viewpoints contribute to an understanding of a ferroelectric displacive
transition. We may speak of a polarization catastrophe in which for some critical
condition the polarization or some Fourier component of the polarization
becomes very large. Equally, we may speak of the condensation of a transverse
optical phonon. This can occur when the corresponding TO phonon frequency
vanishes at some point in the Brillouin zone. LO phonons always have higher
frequencies than the TO phonons of the same wavevector, so need not be
concerned.

The occurrence of ferroelectricity (and antiferroelectricity) in many perovskite-
structure crystals suggests that this structure is favorably disposed to a displacive
transition. Local field calculations make clear the reason for the favored position
of this structure: the O, ions do not have cubic surroundings, and the local field
factors turn out to be unusually large. The dielectric constant can be rewritten in

the form 8 . . . L
L+ 3 2N \where a; is the electronic plus ionic polarizability of

1 — 4%7 S N, " anion of type i and N is the number density of ions i.

6:

When 2N, =3/47 | this is the condition for a polarization catastrophe.



If we write (47/3)2N,a; = 1 — 3s , the dielectric constant becomes € = 1/s,

if s << 1.

Suppose near the critical temperature T_, s varies linearly with temperature:
s=(T-T)/¢ , where £ is a constant. Then the dielectric constant has the form

€

5
T—T,

close to the observed temperature variation in the paraelectric state shown

below.

900 ‘

500

Dielectric constant

m Ba 551 5TiO3
® Cag 551 gTiO4

BaTiO,

1000

m
T-T,

12



Landau Theory of the Phase Transition

A ferroelectric with a first-order phase transition between the ferroelectric and
the paraelectric state is distinguished by a discontinuous change of the
saturation polarization at the transition temperature. If the transition between
the ferromagnetic and paramagnetic states is second-order, the degree of order
goes to zero without a discontinuous change as the temperature is increased.
We assume that the Landau free energy density F in one dimension may be
expanded formally as
F(P,T.E)= —EP + g, + 2g.,P* + tg,P* + tg PP + - |

where P is the polarization of a ferroelectric crystal and the coefficients g,
depend on the temperature. The equilibrium polarization in an applied electric

field E satisfies the extremum condition % —0=—E+g,P+gP°+gP +

If the specimen is a long rod with the external applied field E parallel to the long
axis. To obtain a ferroelectric state we must suppose that the coefficient of the
term in P2 passes through zero at some temperature T,: €& = YT —T,) ,wherey
is taken as a positive constant and a small positive value of g, means that the
lattice is “soft” and is close to instability.



Second-Order Transition

If g, in Landau equation is positive, nothing new is added by the term in g,
and this may then be neglected. The polarization for zero applied electric
field is found: YT — Ty)P, + g,P? =0

For T > T, the only real root of the above eq. is at P, = 0, because y and g, are

positive. Thus T, is the Curie temperature. For T < T, the minimum of the
Landau free energy in zero applied field is at |P| = (y/g,)"*(T, — T)"*

25 (— \\
0.6 - N LiTa 03

20 —

04— 15

T
(0)
104

Al A 10 -

5

0 | | | | 0 |
0 0.2 0.4 0.6 0.8 1.0 450 500 550 600 650 700 750 800

T/TC — Temperature (°C)

The phase transition is a second-order transition because the polarization
goes continuously to zero at the transition temperature. The transition in
LiTaO5is an example of a second-order transition.



First-Order Transition

The transition is first order if g, is negative. We must now retain g, and take it
positive in order to restrain F from going to minus infinity. The equilibrium
condition for E=0is givenby (T —T,)P, — 24P + g6 P2 =0

so that either P,=0or YT —Ty) —|g|P; + g5 P, =0

[oV)
)

P,in 102 C m—2

I i e Y BaTiO, At the transition temperature T, the free
20 energies of the paraelectric and
ferroelectric phases will be equal. That is,
0 the value of F for P,=0 will be equal to the
0 value of F at the minimum given above.
-80 -60 -40 -20 0 20 40
T-T,indegC —

In equilibrium at temperatures over the transition, the terms in P*and P® may
be neglected; thus E=y(T-T,)P, or €T >T,) =1+ 4wP/E =1+ 4m/yT — T})
The result applies whether the transition is of the first or second order, but if

second order we have T, = T,; if first order, then T, < T.. Here, T, is defined as
the value of g, equals to zero and T is the transition temperature.



Ferrodistortive

Antidistortive

Pyroelectric

Ferroelectric

Antipolar

Antiferroelectric

Prototypical Phase Transitions

A ferroelectric displacement is not the only type of instability that may
develop in a dielectric crystal. Other deformations occur, as shown below.

T>T, T<T,
Oo—0O0—O O——O0—O
O O @) @)
o0—0O0——"O 0—O0—=0
O—O0—0O O—O0—O
O O @) O
o0—O0——"O 0—O0—~=0
7 ® 7 ® 7 ® ® 7
_ ® _ ® _ _@ _® _
7 ® 7 ® 7 ® 7 ®

(® © Charged atoms or groups
(O Uncharged atoms or groups

T<T,

Applied field
—

One type of deformation is called
antiferroelectric and has neighboring
lines of ions displaced in opposite
senses. The perovskite structure
appears to be susceptible to many
types of deformation, often with
little difference in energy.
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Ferroelectric Domains

A ferroelectric crystal consists of regions

OCMONS-NIC called domains within each of which the
e 6 6 o o polarization is in the same direction, but in
OO0 5 o | . . o
®© ©6 0 0 o adjacent domains the polarization is in
© different directions. The net polarization

° 71, Y ?P ¢ depends on the difference in the volumes of
@ ) the upward- and downward-directed domains.

Ferroelectric domains on the face
of barium titanate. The face is
normal to the tetragonal or c axis.
The net polarization of the crystal
is increased markedly as the
electric field intensity parallel to
the axis is increased from 550

350 V/em | (.5 Viem | ) 950 ./“" | V/ cm to 980 V/ cm
0.01 em .




Piezoelectricity

All crystals in a ferroelectric state are also piezoelectric: a stress Z applied to
the crystal will change the electric polarization. Similarly, an electric field E
applied to the crystal will cause the crystal to become strained. In schematic
one-dimensional notation, the piezoelectric equations are

P=Zd+Ey, e=Zs+ Ed

where P is the polarization, Z the stress, d the piezoelectric strain constant, E
the electric field, y the dielectric susceptibility, e the elastic strain, and s the
elastic compliance constant. 1 - f

vf @ .O ® O

P +AP1

[— o —

l Stress l

(a) (b)
The general definition of the piezoelectric strain constants is d;; = (d¢;/0E,;),
where i = x, y, z and k = xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from
values of d; given in m/V, multiply by 3 x 10%.



A crystal may be piezoelectric without being ferroelectric: a schematic
example of such a structure is illustrated below. Quartz is piezoelectric, but
not ferroelectric; barium titanate is both. For order of magnitude, in quartz d
~ 1077 cm/statvolt and in barium titanate d =~ 10~ cm/statvolt.

l l

T Stress T
(a) (b)

The lead zirconate-lead titanate system (called the PZT system) is widely used
in polycrystalline (ceramic) form with compositions of very high piezoelectric
coupling. The synthetic polymer poly-vinylidenfluoride (PVF,) is five times
more strongly piezoelectric than crystalline quartz. Thin stretched films of

PVF, are flexible and as ultrasonic transducers are applied in medicine to
monitor blood pressure and respiration.



Piezoelectric Response

Variation of piezoelectric coefficient with temperature.

_ T =10 T T T T
+ [ i NOTE: PZT-4, 5A PRESTABILIZED | " pz1.5m
z(3) | | P
\% | Es : z z+oz —300 7
— | : 3 /
I 5% ? o /] PZT-5A
— I,
x(1) X & // // P'ZT-A
o SRS
—100 %‘4 4'/;71'8
A
0°K
1.

Strain: S, = ox/x, S, = 6z/z S 2 URT W
Electric field: £, =V/z

Piezoelectric Coeff.: d,, = S./E,, d;, = S,/E;

Typical values for d;, ~ -1 A/V, d;; ~ 3 A/V.
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Piezoelectric Scanner

Tripod scanner Tube scanner
I:)Z

PX
Py

S, =dx/x=d3E3=d3V/z

Piezoelectric Constant: Piezoelectric Constant:
K = dx/dV = dgs4L/h K = dx/dV = 2~2d,,L2/nDh
Resonance Freq. for bending: Resonance Freq. for bending:

f=0.56 kC/L2, k= h~N12 f=0.56 kKC/L2 , k = (D? +d?)"/%/8



Scanning Tunneling Microscopy

A scanning tunneling microscope (STM) 1s an instrument for
imaging surfaces at the atomic level. Its development in 1981
earned 1ts mventors, Gerd Binnig and Heinrich Rohrer (at IBM
Zirich), the Nobel Prize in Physics in 1986. For a STM, good
resolution 1s considered to be 0.1 nm lateral resolution and
0.01 nm (10 pm) depth resolution. With this resolution,
individual atoms within materials are routinely 1maged and
manipulated. The STM can be used not only in ultra-high
vacuum but also in air, water, and various other liquid or gas

ambients, and at temperatures ranging from near zero kelvin to
over 1000°C.

References:

1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57
(1982); and ibid 50, 120 (1983).

2. J. Chen, Introduction to Scanning Tunneling Microscopy, New Y ork,
Oxford Univ. Press (1993).



Scanning Tunneling Microscopy
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Theory of STM
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l, oc (V/d)exp(-Ap'2d)

A=1.025 (eV)12A-1
db~4-5eV

d decreases by 1 A,

|, will be increased by ~10 times.



Modes of Operation

1. Constant Current Mode
By using a feedback loop the tip 1s vertically
adjusted m such a way that the current always stays
constant. As the current 1s proportional to the local
density of states, the tip follows a contour of a
constant density of states during scanning. A kind
of a topographic image of the surface i1s generated
by recording the vertical position of the tip.

U, |Feedback
[ lloop

I—

 , A




7 x 7 Reconstruction on Si(111) Resolved in Real Space

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel
Phys. Rev. Lett. 50, 120 (1983)




Problems

1. Polarizability of conducting sphere. Show that the polarizability of a
conducting metallic sphere of radius a is a = a3 . This result is most easily
obtained by noting that E = 0 inside the sphere and then using the
depolarization factor 4m/3 for a sphere. The result gives values of a of the
order of magnitude of the observed polarizabilities of atoms. A lattice of
N conducting spheres per unit volume has dielectric constant € = 1 +
4rtNa3, for Na << 1. The suggested proportionality of a to the cube of the
ionic radius is satisfied quite well for alkali and halogen ions.

2. Dielectric constant below transition temperature. In terms of the
parameters in the Landau free energy expansion, show that for a second-
order phase transition the dielectric constant below the transition
temperature is €e=1+47wAP/E =1+ 2mw/y(T.— T) .



3. Soft modes and lattice transformations. Sketch a monatomic linear
lattice of lattice constant a. (a) Add to each of six atoms a vector to
indicate the direction of the displacement at a given time caused by a
longitudinal phonon with wavevector at the zone boundary. (b) Sketch
the crystal structure that results if this zone boundary phonon becomes
unstable (w - 0) as the crystal is cooled through T.. (c) Sketch on one
graph the essential aspects of the longitudinal phonon dispersion
relation for the monatomic lattice at T well above T.and at T = T.. Add to
the graph the same information for phonons in the new structure at T
well below T..
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