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Macroscopic Electric Field in a Material

We first want to ask two questions:

• What is the relation in the material between the dielectric polarization 

P and the macroscopic electric field E in the Maxwell equations? 

• What is the relation between the dielectric polarization and the local 

electric field which acts at the site of an atom in the lattice? The local 

field determines the dipole moment of the atom. 

Maxwell Equations  (in CGS) Polarization 

The polarization P is defined as the 

dipole moment per unit volume, 

averaged over the volume of a cell. 

The total dipole moment is 

defined as 

the position vector of the charge qn. 

where rn is 



The electric field at a point r from a 

dipole moment p is given by a 

standard result of elementary 

electrostatics: 

The lines of force of a dipole pointing 

along the z axis are shown in the 

right.

We define the macroscopic electric field E(r0) as the average field over the 

volume of the crystal cell that contains the lattice point r0: 

where e(r) is the microscopic electric field at the 
point r. 

It is adequate for all problems in the electrodynamics of crystals provided 

that we know the connection between E, the polarization P, and the current 

density j, and provided that the lengths of interest are long in comparison 

with the lattice spacing.



By a famous theorem of electrostatics the macroscopic electric field 

caused by a uniform polarization P is equal to the electric field in vacuum 

of a fictitious surface charge density σ = ň･P on the surface of the body. 

Here ň is the unit normal to the surface, drawn outward from the 

polarized matter. 

By Gauss’s law,                                         .     

We add E1 to the external applied field E0 to obtain the total macroscopic 

field E inside the slab, with zˆ the unit vector normal to the plane of the 

slab: 

If the polarization is uniform within the body, the only contributions to the 

macroscopic field E are from E0 and E1 .



Depolarization Field
The field E1 is called the depolarization field, 

for within the body it tends to oppose the 

external applied field E0 as in the figure below. 

If Px, Py, Pz are the components of the 

polarization P referred to the principal axes of 

an ellipsoid, then the components of the 

depolarization field are written 

Here Nx, Ny, Nz are the depolarization 

factors; their values depend on the 

ratios of the principal axes of the 

ellipsoid. The N’s are positive and 

satisfy the sum rule Nx + Ny + Nz = 4𝜋 

in CGS, and Nx + Ny + Nz = 1 in SI. 

A uniform E0 will induce 
uniform polarization in an 
ellipsoid. 

We introduce the dielectric susceptibility χ such that polarization             , then 



Local Electric Field at an Atom
The value of the local electric field that acts at the site of an atom is 

significantly different from the value of the macroscopic electric field. 

Consider the field that acts on the atom at the center of the sphere. If all 

dipoles are parallel to the z axis and have magnitude p, the z component of 

the field at the center due to all other dipoles is, 

The x, y, z directions are equivalent because of the symmetry; thus 

whence  Edipole = 0.

The local field at an atom is the sum of the electric field E0 from external 

sources and of the field from the dipoles within the specimen. It is 

convenient to decompose the dipole field so that part of the summation 

over dipoles may be replaced by integration. Then,



E0 = field produced by fixed charges external to the body;

E1 = depolarization field, from a surface charge density nˆ･P on the outer 

surface of the specimen;

E2 = Lorentz cavity field: field from polarization charges on inside of a 

spherical cavity cut (as a mathematical fiction) out of the specimen 

with the reference atom as center; E1 + E2 is the field due to uniform 

polarization of the body in which a hole has been created; 

E3 = field of atoms inside cavity. 

The contribution E1 + E2 + E3 to the local field is the total field at one atom 

caused by the dipole moments of all the other atoms in the specimen. 

+= +

+
+

+

+
+

+

++
+
+
++

+
++

+
+
++

+

-
-

-

-
-

-

-
-

-
-
-
--

-

- -
-
-
- -

-

E1

E2

E3



Lorentz Cavity Field
The field E2 due to the polarization charges on the surface of the fictitious 
cavity was calculated by Lorentz. If 𝜃 is the polar angle referred to the 
polarization direction, the surface charge density on the surface of the 
cavity is −P cos𝜃. The electric field at the center of the spherical cavity of 
radius a is 

The field E3 due to the dipoles within the 

spherical cavity is the only term that depends 

on the crystal structure. For a reference site 

with cubic surroundings in a sphere that E3 = 0 

if all the atoms may be replaced by point 

dipoles parallel to each other. The total local 

field at a cubic site is, 

This is the Lorentz relation: the field acting at an atom in a cubic site is the 
macroscopic field E plus 4𝜋P/3 from the polarization of the other atoms in 
the specimen. 

Charge on ring =
2𝜋asin𝜃･ad𝜃･Pcos𝜃



Dielectric Constant and Polarizability
The dielectric constant ϵ of an isotropic or cubic medium relative to vacuum is 

defined in terms of the macroscopic field E: 

and

The polarizability α of an atom is defined in terms of the local electric field at 
the atom: , where p is the dipole moment. The polarizability is an 

atomic property, but the dielectric constant will depend on the manner in 

which the atoms are assembled to form a crystal. The relation of the dielectric 

constant to the polarizabilities depends on the relation between the 

macroscopic electric field and the local electric field. If the local field is given 

by the Lorentz relation, then the polarization of a crystal may be expressed 

approximately as 
,   and

where Nj is the concentration and αj the polarizability of atoms j. 

Since ≡  Clausius-Mossotti relation. 



Electronic Polarizability 
The total polarizability may usually be separated into three parts: electronic, 

ionic, and dipolar. The electronic contribution arises from the displacement 

of the electron shell relative to a nucleus. The ionic contribution comes from 

the displacement of a charged ion with respect to other ions. The dipolar 

polarizability arises from molecules with a permanent electric dipole 

moment that can change orientation in an applied electric field. 

The left figure shows the frequency-

dependent polarizability. The dielectric 

constant (ϵ) at optical frequencies 

arises almost entirely from the 

electronic polarizability. The dipolar 

and ionic contributions are small at 

high frequencies because of the inertia 

of the molecules and ions. In the 

optical range, by ϵ = n2, we obtain the 

refractive index n



An electron bound harmonically to an atom will show resonance absorption 

at a frequency ω0 = (β/m)1/2, where β is the force constant. The motion of the 

electron in the local electric field Eloc sin(ωt) is 

Let                             we obtain

The dipole moment has the amplitude: 

Electronic polarizabilities α of atoms and ions, in 10−24 cm3 



Three Dielectric Phases



Phase Transition

• A phase is a physically distinct, chemically homogeneous 

and mechanically separable state.

• Change of states of matter at specific combinations of 

temperature and pressure is called phase transition.

First order

Latent heat is involved

Polarization is discontinuous

eg: water liquid-vapor transition

ferroelectric-paraelectric

Second order

No latent heat

Continuous variation of polarization

eg: normal-superconducting state

Ferromagnetic-paramagnetic



Structural Phase Transitions

It is not uncommon for crystals to transform from one crystal structure to 

another as the temperature or pressure is varied. The stable structure at a 

temperature T is determined by the minimum of the free energy F = U − TS. 

There will be a transition from A to B if a temperature Tc exists such that 

FA(Tc) > FB(Tc). This is because the structure B may have a softer or lower 

frequency phonon spectrum than A. As the temperature is increased more 

phonons in B will be excited than the phonons in A. Because the entropy 

increases with the occupancy, the entropy of B will become higher than the 

entropy of A as the temperature is increased. 

For a stable structure A at absolute zero, it generally has the lowest 

accessible internal energy of all the possible structures. Even this selection 

of a structure A can be varied with application of pressure, because a low 

atomic volume will favor closest-packed or even metallic structures. 

Hydrogen and xenon, for example, become metallic under extreme pressure. 



Ferroelectric Crystals

A ferroelectric crystal exhibits an 

electric dipole moment even in the 

absence of an external electric field. In 

this state the center of positive charge 

of the crystal does not coincide with 

the center of negative charge. The plot 

of polarization versus electric field for 

the ferroelectric state shows a 

hysteresis loop. 

Above the transition temperature, ferroelectricity usually disappears and the 

crystal is in a paraelectric state. There is usually a rapid drop in the dielectric 

constant as the temperature increases. In some crystals the ferroelectric dipole 

moment is not changed by an electric field of the maximum intensity before 

electrical breakdown. Such crystals are called pyroelectric. Lithium niobate, 

LiNbO3, is pyroelectric at room temperature. It has a high transition 

temperature (Tc = 1480 K) and a high saturation polarization (50 μC/cm2). 



Ferroelectric crystals may be classified into two main groups by their structural 

transition, order-disorder or displacive. One may define the character of the 

transition in terms of the dynamics of the soft optical phonon modes. If a soft 

mode can propagate in the crystal at the transition, then the transition is 

displacive. If the soft mode is only diffusive (non-propagating) there is really not 

a phonon at all, but is only a large amplitude hopping motion between the wells 

of the order-disorder system. Many ferroelectrics have soft modes that fall 

between these two extremes. The order-disorder class of ferroelectrics includes 

crystals with hydrogen bonds in which the motion of the protons is related to 

the ferroelectric properties, as in potassium dihydrogen phosphate (KH2PO4) and 

isomorphous salts. The substitution of deuterons for protons nearly doubles Tc, 

although the fractional change in the molecular weight of the compound is less 

than 2 percent: 

Character of Transition

Neutron diffraction data show that above the Curie temperature the proton 

distribution along the hydrogen bond is symmetrically elongated. Below the 

Curie temperature the distribution is more concentrated and asymmetric with 

respect to neighboring ions, giving a polarization. 



The displacive class of ferroelectrics includes ionic crystal structures closely 

related to the perovskite and ilmenite structures. The general chemical formula 

for perovskite compounds is ABX3, where 'A' and 'B' are two ions, often of very 

different sizes, and X is anion (frequently oxide) that bonds to both ions. The 'A' 

atoms are generally larger than the 'B' atoms. The ideal cubic structure has the 

B cation in 6-fold coordination, surrounded by an octahedron of anions, and the 

A cation in 12-fold cuboctahedral coordination. The perovskite structure of 

barium titanate (BaTiO3) is slightly deformed below the Curie temperature, with 

Ba2
+ and Ti4

+ ions displaced relative to the O2
− ions, thereby developing a dipole 

moment. The upper and lower oxygen ions may move downward slightly. 

Perovskite Structure



Spontaneous polarization projected on cube edge of barium titanate as a 

function of temperature is displayed below. Estimate the order of 

magnitude of the ferroelectric effects in barium titanate: the observed 

saturation polarization Ps at room temperature is 8×104 esu cm−2. The 

volume of a cell is 64×10−24 cm3, so that the dipole moment of a cell 

is                                                                                          .                                                                           

If the positive ions Ba2
+ and Ti4

+ were moved by 𝛿 = 0.1 Å with respect to 

the negative O2
− ions, the dipole moment of a cell would be 6e𝛿≃ 3 × 10−18 

esu cm. 



Displacive Transition
Two viewpoints contribute to an understanding of a ferroelectric displacive 

transition. We may speak of a polarization catastrophe in which for some critical 

condition the polarization or some Fourier component of the polarization 

becomes very large. Equally, we may speak of the condensation of a transverse 

optical phonon. This can occur when the corresponding TO phonon frequency 

vanishes at some point in the Brillouin zone. LO phonons always have higher 

frequencies than the TO phonons of the same wavevector, so need not be 

concerned. 

The occurrence of ferroelectricity (and antiferroelectricity) in many perovskite-

structure crystals suggests that this structure is favorably disposed to a displacive 

transition. Local field calculations make clear the reason for the favored position 

of this structure: the O2
− ions do not have cubic surroundings, and the local field 

factors turn out to be unusually large. The dielectric constant can be rewritten in 

the form 
where αi is the electronic plus ionic polarizability of 

an ion of type i and Ni is the number density of ions i.

When                         , this is the condition for a polarization catastrophe.



If we write                                          the dielectric constant becomes ϵ = 1/s, 
if s << 1. 

Suppose near the critical temperature Tc , s varies linearly with temperature: 

s = (T−Tc)/𝜉 , where 𝜉 is a constant. Then the dielectric constant has the form 

close to the observed temperature variation in the paraelectric state shown 
below.



Landau Theory of the Phase Transition
A ferroelectric with a first-order phase transition between the ferroelectric and 

the paraelectric state is distinguished by a discontinuous change of the 

saturation polarization at the transition temperature. If the transition between 

the ferromagnetic and paramagnetic states is second-order, the degree of order 

goes to zero without a discontinuous change as the temperature is increased. 

We assume that the Landau free energy density F in one dimension may be 

expanded formally as

where P is the polarization of a ferroelectric crystal and the coefficients 𝗀n 
depend on the temperature. The equilibrium polarization in an applied electric 
field E satisfies the extremum condition 

If the specimen is a long rod with the external applied field E parallel to the long 

axis. To obtain a ferroelectric state we must suppose that the coefficient of the 

term in P2 passes through zero at some temperature T0:                             where 𝛾 

is taken as a positive constant and a small positive value of g2 means that the 

lattice is “soft” and is close to instability. 



Second-Order Transition
If g4 in Landau equation is positive, nothing new is added by the term in g6, 

and this may then be neglected. The polarization for zero applied electric 

field is found:

For T ≥ T0 the only real root of the above eq. is at Ps = 0, because 𝛾 and g4 are 
positive. Thus T0 is the Curie temperature. For T < T0 the minimum of the 
Landau free energy in zero applied field is at 

The phase transition is a second-order transition because the polarization 
goes continuously to zero at the transition temperature. The transition in 
LiTaO3 is an example of a second-order transition. 

LiTaO3



First-Order Transition

The transition is first order if g4 is negative. We must now retain g6 and take it 

positive in order to restrain F from going to minus infinity. The equilibrium 

condition for E = 0 is given by 

so that either Ps = 0 or

BaTiO3

In equilibrium at temperatures over the transition, the terms in P4 and P6 may 

be neglected; thus E = 𝛾(T − T0)P ,  or 

The result applies whether the transition is of the first or second order, but if 

second order we have T0 = Tc ; if first order, then T0 < Tc. Here, T0 is defined as 

the value of g2 equals to zero and Tc is the transition temperature. 

At the transition temperature Tc the free 
energies of the paraelectric and 
ferroelectric phases will be equal. That is, 
the value of F for Ps=0 will be equal to the 
value of F at the minimum given above. 



Prototypical Phase Transitions
A ferroelectric displacement is not the only type of instability that may 

develop in a dielectric crystal. Other deformations occur, as shown below. 

One type of deformation is called 

antiferroelectric and has neighboring 

lines of ions displaced in opposite 

senses. The perovskite structure 

appears to be susceptible to many 

types of deformation, often with 

little difference in energy.

PbZrO3-PbTiO3 
mixed system



Ferroelectric Domains

A ferroelectric crystal consists of regions 

called domains within each of which the 

polarization is in the same direction, but in 

adjacent domains the polarization is in 

different directions. The net polarization 

depends on the difference in the volumes of 

the upward- and downward-directed domains. 

Ferroelectric domains on the face 

of barium titanate. The face is 

normal to the tetragonal or c axis. 

The net polarization of the crystal 

is increased markedly as the 

electric field intensity parallel to 

the axis is increased from 550 

V/cm to 980 V/cm. 



Piezoelectricity
All crystals in a ferroelectric state are also piezoelectric: a stress Z applied to 

the crystal will change the electric polarization. Similarly, an electric field E 

applied to the crystal will cause the crystal to become strained. In schematic 

one-dimensional notation, the piezoelectric equations are 

where P is the polarization, Z the stress, d the piezoelectric strain constant, E 

the electric field, χ the dielectric susceptibility, e the elastic strain, and s the 

elastic compliance constant. 

The general definition of the piezoelectric strain constants is 

where i ≡ x, y, z and k ≡ xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from 

values of dik given in m/V, multiply by 3 × 104 . 



The lead zirconate-lead titanate system (called the PZT system) is widely used 

in polycrystalline (ceramic) form with compositions of very high piezoelectric 

coupling. The synthetic polymer poly-vinylidenfluoride (PVF2) is five times 

more strongly piezoelectric than crystalline quartz. Thin stretched films of 

PVF2 are flexible and as ultrasonic transducers are applied in medicine to 

monitor blood pressure and respiration. 

A crystal may be piezoelectric without being ferroelectric: a schematic 

example of such a structure is illustrated below. Quartz is piezoelectric, but 

not ferroelectric; barium titanate is both. For order of magnitude, in quartz d 

≃ 10−7 cm/statvolt and in barium titanate d ≃ 10−5 cm/statvolt. 



Piezoelectric Response

Strain: S1 = x/x, S3 = z/z

Electric field:  E3 = V/z

Piezoelectric Coeff.:  d33 = S3/E3 , d31 = S1/E3

Typical values for d31 ~ -1 Å/V, d33 ~ 3 Å/V.

R.T.



Inchworm Motor



Piezoelectric Scanner

Tripod scanner Tube scanner

S1 = x/x = d31E3 = d31V/z

Piezoelectric Constant: 

K = dx/dV = d31L/h

Resonance Freq. for bending:

f = 0.56 кC/L2 , к = h/√12

Piezoelectric Constant: 

K = dx/dV = 2√2d31L
2/Dh 

Resonance Freq. for bending:

f = 0.56 кC/L2 , к = (D2 +d2)1/2/8



Scanning Tunneling Microscopy

A scanning tunneling microscope (STM) is an instrument for 

imaging surfaces at the atomic level. Its development in 1981 

earned its inventors, Gerd Binnig and Heinrich Rohrer (at IBM 

Zürich), the Nobel Prize in Physics in 1986. For a STM, good 

resolution is considered to be 0.1 nm lateral resolution and 

0.01 nm (10 pm) depth resolution. With this resolution, 

individual atoms within materials are routinely imaged and 

manipulated. The STM can be used not only in ultra-high 

vacuum but also in air, water, and various other liquid or gas 

ambients, and at temperatures ranging from near zero kelvin to 

over 1000°C.
References:

1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 

(1982); and ibid 50, 120 (1983).

2. J. Chen, Introduction to Scanning Tunneling Microscopy, New York, 

Oxford Univ. Press (1993).



Scanning Tunneling Microscopy
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Tunneling current  It

It  (V/d)exp(-A1/2d)

A = 1.025 (eV)-1/2Å-1

 ~ 4 – 5 eV 

d decreases by 1 Å, 

It will be increased by ~10 times.

Theory of STM 

Tunneling



1. Constant Current Mode

      By using a feedback loop the tip is vertically 

adjusted in such a way that the current always stays 

constant. As the current is proportional to the local 

density of states, the tip follows a contour of a 

constant density of states during scanning. A kind 

of a topographic image of the surface is generated 

by recording the vertical position of the tip.

 

Modes of Operation 



7 × 7 Reconstruction on Si(111) Resolved in Real Space

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel

Phys. Rev. Lett. 50, 120 (1983)



Problems 

1. Polarizability of conducting sphere. Show that the polarizability of a 

conducting metallic sphere of radius a is α = a3 . This result is most easily 

obtained by noting that E = 0 inside the sphere and then using the 

depolarization factor 4𝜋/3 for a sphere. The result gives values of α of the 

order of magnitude of the observed polarizabilities of atoms. A lattice of 

N conducting spheres per unit volume has dielectric constant ϵ = 1 +

4𝜋Na3, for Na << 1. The suggested proportionality of α to the cube of the 

ionic radius is satisfied quite well for alkali and halogen ions.

2. Dielectric constant below transition temperature. In terms of the 

parameters in the Landau free energy expansion, show that for a second-

order phase transition the dielectric constant below the transition 

temperature is 



3. Soft modes and lattice transformations. Sketch a monatomic linear 

lattice of lattice constant a. (a) Add to each of six atoms a vector to 

indicate the direction of the displacement at a given time caused by a 

longitudinal phonon with wavevector at the zone boundary. (b) Sketch 

the crystal structure that results if this zone boundary phonon becomes 

unstable (ω → 0) as the crystal is cooled through Tc . (c) Sketch on one 

graph the essential aspects of the longitudinal phonon dispersion 

relation for the monatomic lattice at T well above Tc and at T = Tc . Add to 

the graph the same information for phonons in the new structure at T 

well below Tc . 
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